MILLIKEN DEVELOPMENT GROUP

Keith Road Maison Civil Servicing Design Brief

File No. 12202 November 2012

200 – 901 W 16TH ST NORTH VANCOUVER, BC V7P 1R2 P: 604-987-9070 F: 604-987-9071 www.creus.ca

Civil Engineers & Project Managers

TABLE OF CONTENTS

1.	INTRODUCTION	1
2.	SITE CHARACTERIZATION	1
3.	ROADS	1
4.	WATER	2
5.	SANITARY	2
6.	STORM	2
6.1	. STORMWATER MANAGEMENT PLAN	3
7.	OUTSIDE UTILITIES (BC HYDRO / TELUS / SHAW / FORTISBC)	3
8.	REPORT SUBMISISON	4
APP	ENDIX A: FIGURES & CALCULATIONS	5

1. INTRODUCTION

Milliken Developments are proposing to redevelop the property at 805 & 825 Keith Road in West Vancouver. The subject lands include 2 lots on the North side of Keith Road and West side of Taylor Way. The 2 lots are aligned in a north-south orientation. The total site area is approximately 0.65ha.

Creus Engineering Ltd. has been retained by Milliken Developments to provide a preliminary review of the civil servicing requirements for the above project. This design brief will provide a preliminary review of the surrounding road system, the existing offsite municipal infrastructure capacity for the proposed development and it will define any special design requirements / offsite upgrades required to service the proposed development.

The following utilities will be reviewed in this report:

- Roads
- Water System
- Sanitary Sewers
- Storm Sewers
- Utilities

It is assumed that all works will be designed and constructed in accordance with the most recent version of the District of West Vancouver's Development Servicing Bylaw.

2. SITE CHARACTERIZATION

The proposed development is located in the Sentinel Hill area of West Vancouver, along Taylor Way. The subject property is bounded by residential properties on Eden Road to the north, residential properties to the west, Taylor Way to the east, and Keith Road to the south. See Figure 2.1 - Site Location Plan.

The subject property currently contains a 2 storey single family house with driveway access from Keith Road. The proposed development generally consists of a new 3 storey - 108 bed, care facility complete with underground parking. The project will involve a major redevelopment of the site including re-grading of the existing boulevards on Keith Road and Taylor Way. The total site area is approximately 6473m².

3. ROADS

The Keith Road Maison development proposal includes no changes to the local road network. Generally, the curb and sidewalk will be replaced with new boulevard sidewalk along the site frontages. The curb and sidewalk along Keith Road is being reconstructed as part of the Evelyn Drive development, so the extent of reconstruction on Keith Road may be less. All road upgrades will be constructed per District of West Vancouver / TAC standards. Works on Taylor Way will require Ministry of Transportation (MOT) review and approval. Taylor Way upgrades will be constructed per MOT standards. Site access will be from Keith Road with a new driveway constructed to District of West Vancouver standards. See Figure 3.1 for details.

4. WATER

The existing water system consists of a 350mm watermain along Keith Road and a 200mm watermain along Taylor Way. This proposed development will be serviced off of Keith Road. Based on the size of the existing water mains, the extent of looping in the existing water system and the system operating pressures, it is expected there will be no issues servicing the proposed development. Based on the proposed development plans, the estimated water demands have been estimated as follows:

Residences = 110 Fire Flow (FF) = 155I/s (estimated, per FUS) Maximum Day Demand (MDD) = 1.6I/s Peak Hour Demand (PHD) = 2.4I/s Design Flow (greater of MDD+FF / PHD) = 156.6I/s

See Figure 4.1 for detailed calculations.

5. SANITARY

The existing sanitary system consists of a 200mm sanitary main along Keith Road and Taylor Way. The sanitary mains south of the proposed development were recently upgraded as part of the Evelyn Drive development. The existing gravity system has capacity for the proposed development. The 200m diameter main across Keith Rd flows approximately 44% full during peak wet weather flows. No downstream upgrades are required. Based on the proposed development plans, the estimated peak sanitary flows have been estimated as follows:

Residences = 110 Site Area = 0.65ha Average Dry Weather Flow (ADWF) = 0.73l/s Peak Wet Weather Flow (PWWF) = 3.09l/s

See Figure 5.1 for detailed calculations.

6. STORM

The existing storm system consists of a 525mm storm main along Keith Road, and a 600mm storm main along Taylor Way. While specific site coverage and grading are preliminary at this time, effective impervious areas are expected to increase as part of the proposed development. The proposed development will require a stormwater management plan (see Section 6.1 below). As part of the proposed stormwater management plan, detention for the 10yr storm event will be required to limit post-development runoff to pre-development levels. Therefore the increase in site imperviousness will be mitigated by on-site detention and there will be no impact to the downstream storm system. The existing storm sewer system is adequate for the existing condition therefore there will be no impacts to the storm sewer system from the proposed development. Based on the proposed development plans, the estimated peak storm flows have been estimated as follows:

Catchment Area = 0.65ha Predevelopment Runoff Coefficient = 0.33 Estimated Predevelopment Peak Flow (10yr storm event) = 46l/s Postdevelopment Runoff Coefficient = 0.64 Estimated Postdevelopment Peak Flow (10yr storm event) = 90l/s

6.1. STORMWATER MANAGEMENT PLAN

A stormwater management plan will be required for this site. Based on the proposed site plans, the postdevelopment impervious areas are estimated to be on the order of 53%. The stormwater objectives, per the District of West Vancouver Development Servicing Bylaw, are as follows:

- Reduce, to the extent possible, the volume of stormwater runoff from the developed condition during all storm events up to the 50% of mar storm event.
- Limit post-devlopment runoff during the 10yr storm event to predevelopment levels.
- Rainfall data: West Vancouver IDF Curve (MAR storm event = 78mm)

In addition, in accordance with the OCP Policy NE 8, proposed stormwater management facilities will be located and designed in conformance with policies that promote site sensitive design and minimize development in creek corridors. The proposed development, including underground parkade structures, has extents covering approximately 53% of the site. Stormwater BMP's based on infiltration to groundwater will be used where possible. The effective impervious area will be reduced, to the extent possible, with above grade landscape areas. An onsite bioswale is proposed along the east boundary to help infiltrate building runoff to ground. To help meet the stormwater objectives, a minimum soil depth of 300mm is recommended. It is assumed that these measures will be sufficient to satisfy the stormwater objectives. Rate control during the 10-year return period storm event will be achieved with infiltration / detention tank(s). Conveyance during the 100-year return period event will be managed through site grading.

7. OUTSIDE UTILITIES (BC HYDRO / TELUS / SHAW / FORTISBC)

BC Hydro, Telus and Shaw have existing overhead infrastructure on the north side of Keith Road, underground infrastructure on the south side of Keith Road and overhead infrastructure along Taylor Way. We do not anticipate any issues servicing the proposed development.

FortisBC has two existing gas mains on Keith Road: an intermediate pressure (IP) main and a regular pressure main on the south side of Keith Road. We do not anticipate any issues providing gas service to the proposed development.

As part of the detailed design for the project, coordination with BC Hydro, Telus, Shaw and FortisBC will be required for their respective utility designs.

8. **REPORT SUBMISISON**

Prepared By:

CREUS Engineering Ltd

Russell Warren, P.Eng.

APPENDIX A: FIGURES & CALCULATIONS

Figure 2.1: Site Location Plan

Figure 2.2: Site Plan

Figure 4.1: Preliminary Water Calculations

Fire Flow

Per 'WATER SUPPLY FOR PUBLIC FIRE PROTECTION', 1999 by Fire Underwriters Survey

	Base Fire Flow Calculation Construction Coefficient, C Floor Area, A Base Fire Flow (220C√A)	=	1.0 6903 18279	m² I/min	(ordinary construction) _(per FUS)	
	Content Hazard Credit/Surcharge Adjusted Base Fire Flow	=	-25% 13709	l/min	(low content hazard)	r FUS)
	Sprinkler Protection Credit Sprinkler Protection Credit		-50% -9139	l/min	_(NFPA 13 sprinklers)	-OW (pe
	Exposure Surcharge					Ш Ш
		10.1 to 20m 20.1 to 30m 30.1 to 45	15% 10% 5%	charge charge charge	1 1	FIRI
	Exposure Surcharge	=	4570	l/min	-	
	Total Factored Fire Flow	=	9139	l/min	-	
	Design Fire Flow (per FUS)	=	9300	l/min	(155 l/s)	
Don	nestic Flow					
	Care Units		110		(per NORR Architect)	
	Persons per unit	9 <u>1</u> 20	1.0			
	i otal Persons	=	110	capita		
	Institutional Area		0.08	ha		DN.
	Equivalent Population		90	l/ha/d	(per MMCD)	MA
	Average daily flow	=	7	capita		DE
	Total Persons	=	117	capita		ESTIC
	Maximum Day Demand		1200	l/capita/d	(per MMCD)	MOC
	Peak Hour Demand		1800	l/capita/d	(per MMCD)	
	Total Maximum Day Demand	=	1.63	l/s		
	Total Peak Hour Demand	=	2.44	l/s		
Des	ian Flows					
	Design Fire Flow (FF)	=	155	l/s	(as above)	NO
	Total Maximum Day Demand (MDD)	E	1.63	l/s	(as above)	FLO
	Total Peak Hour Demand (PHD)	=	2.44	l/s	(as above)	Z
	Design Flow	=	156.6	l/s	(MDD+FF / PHD)	DESIG

Figure 5.1: Preliminary Sanitary Calculations

Postdevelopment Service Area

Care Units		110	(per NOOR Architect)	
Persons per unit		1.0		
Total Persons	=	110 capita		
Single Person Flow		410 l/capita/d	(per DWV Bylaw)	
Average daily flow		0.52 l/s		
Institutional Area		0.8 ha		
Institutional Flow		22500 l/ha/d	(per DWV Bylaw)	
Average daily flow		0.21 l/s		
Total average daily flow	=	0.73 l/s		Ę
				Ш Л
Infiltration Allowance				E C
Intensity		16800 l/ha/d	(per DWV Bylaw)	
Site area		0.65 ha		L S
Total infiltration	=	0.13 l/s		
Posk Flow				SO
Average daily flow		0731/e	(as above)	<u>a</u>
Peaking factor		4.23	(Us above) (Harmon Formula)	
Peak flow	=	3.09 l/s	(nannor rionnula)	
1 out now		0.00 10		
Design Flow				
Design flow	=	3.22 l/s		
Existing offfsite peak flow	=	15.70 l/s	(per DWV)	
Total offsite design flow	=	18.92 l/s		
Pine Details				
Diameter		200 mm	(existing sanitary)	
n-value		0.013	(externing carintary)	
Slope		2.0 %	(lowest offsite grade)	Ē
seeggere the a			0	AC
Flow Calculations				AP
Flow depth		89 mm		
Velocity		1.4 m/s		d
Percent Full		44 %	(sufficient capacity)	٩
Flow		18.92 l/s		

Figure 6.1: Preliminary Storm Calculations

<u>Predevelopment Catchment Area</u> Impervious Area (ex buildings) Pervious Area (undeveloped areas, landscape	area	0.65 ha 0.03 ha 0.62 ha			
Postdevelopment Catchment Area Impervious Area (buildings, driveways)		0.65 ha 0.34 ha			AREAS
Pervious Area (undeveloped, landscape areas, Postdevelopment Percent Impervious)	0.31 na			
Predevelopment Peak Flows					
Catchment area (A)		0.65 ha	(as	above)	
Weighted average from impervious and perviou Impervious runoff coefficient Pervious runoff coefficient Predevelopment runoff coefficient (C) Rainfall intensity (I) Predevelopment toc From West Vancouver Municipal Hall IDF 10yr rainfall intensity	us areas = Curve	0.95 0.30 0.33 15 min 53 mm/hr	for for for	0.03 ha 0.62 ha 0.65 ha	PREDEVELOPMENT
Predevelopment peak flow (Q=CIA)	=	32 l/s			
Postdevelopment Peak Flows Catchment area (A)		0.65 ha	(as	above)	INT
Postdevelopment runoff coefficient (C) Rainfall intensity (I)	=	0.64	for	0.65 ha	OPME
Postdevelpoment toc From DWV Municipal Hall IDF Curve 10yr rainfall intensity		8 min 78 mm/hr			STDEVEL
Postdevelopment peak flow (Q=CIA)	=	90 l/s			Ď